Periodic patterns in human mobility

نویسنده

  • Matthew James Williams
چکیده

The recent rise of services and networks that rely on human mobility has prompted the need for tools that detect our patterns of visits to locations and encounters with other individuals. The widespread popularity of locationand encounter-aware mobile phones has given us a wealth of empirical mobility data and enabled many novel applications that benefit from automated detection of an individual’s mobility patterns. This thesis explores the presence and character of periodic patterns in the visits and encounters of human individuals. Novel tools for extracting and analysing periodic mobility patterns are proposed and evaluated on real-world data. We investigate these patterns in a range of datasets, including visits to public transport stations on a metropolitan scale, university campus WLAN access point transitions, online locationsharing service checkins, and Bluetooth encounters among university students. The methods developed in this thesis are designed for decentralised implementation to enable their real-world deployment. Analysing an individual’s visit and encounter events is a challenging problem since the data are often highly sparse. In order to study visit patterns we propose a novel inter-event interval (IEI) analysis approach, which is inspired by neural coding techniques. The resulting measure, IEI-irregularity, quantifies the weekly periodic patterns of an individual’s visits to a location. To detect encounter patterns we propose and compare methods based on IEI analysis and periodic subgraph mining. In particular, we introduce the novel concept of a periodic encounter community; that is, a collection of individuals that share the same periodic encounter pattern. The decentralised algorithms we develop for periodic encounter community detection are of particular relevance to human-based opportunistic communication networks. We explore these communities in terms of their opportunistic content sharing performance. Our findings show that periodic patterns are a prominent feature of human mobility and that these patterns are algorithmically detectable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding Temporal Human Mobility Patterns in a City by Mobile Cellular Data Mining, Case Study: Tehran City

Recent studies have shown that urban complex behaviors like human mobility should be examined by newer and smarter methods. The ubiquitous use of mobile phones and other smart communication devices helps us use a bigger amount of data that can be browsed by the hours of the day, the days of the week, geographic area, meteorological conditions, and so on. In this article, mobile cellular data mi...

متن کامل

Recognition of Periodic Behavioral Patterns from Streaming Mobility Data

Ubiquitous location-aware sensing devices have facilitated collection of large volumes of mobility data streams from moving entities such as people and animals, among others. Extraction of various types of periodic behavioral patterns hidden in such large volume of mobility data helps in understanding the dynamics of activities, interactions, and life style of these moving entities. The ever-in...

متن کامل

Exploring Millions of Footprints in Location Sharing Services

Location sharing services (LSS) like Foursquare, Gowalla, and Facebook Places support hundreds of millions of userdriven footprints (i.e., “checkins”). Those global-scale footprints provide a unique opportunity to study the social and temporal characteristics of how people use these services and to model patterns of human mobility, which are significant factors for the design of future mobile+l...

متن کامل

Spatiotemporal Pattern Mining: Algorithms and Applications

With the fast development of positioning technology, spatiotemporal data has become widely available nowadays. Mining patterns from spatiotemporal data has many important applications in human mobility understanding, smart transportation, urban planning and ecological studies. In this chapter, we provide an overview of spatiotemporal data mining methods. We classify the patterns into three cate...

متن کامل

On The Fly Learning of Mobility Profiles for Intelligent Routing in Pocket Switched Networks

In this paper, we propose a novel routing protocol, PRO, for profile-based routing in pocket switched networks. Differing from previous routing protocols, PRO treats node encounters as periodic patterns and uses them to predict the times of future encounters. Exploiting the regularity of human mobility profiles, PRO achieves fast (low-deliverylatency) and efficient (low-message-overhead) routin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013